Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α.
نویسندگان
چکیده
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.
منابع مشابه
Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior
Astrocytes are active partners in neural information processing [1, 2]. However, the roles of astrocytes in regulating behavior remain unclear [3, 4]. Because astrocytes have persistent circadian clock gene expression and ATP release in vitro [5-8], we hypothesized that they regulate daily rhythms in neurons and behavior. Here, we demonstrated that daily rhythms in astrocytes within the mammali...
متن کاملClock gene expression in rheumatoid arthritis and osteoarthritis
Circadian rhythms are controlled and generated by the biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) (1,2). This “master clock” is synchronized to 24h by various environmental factors, primarily the dark-light-cycle but also by regularly occurring social processes, motor activity and food intake (3,4). Patients with RA show modulated circadian rhythms of inflammatory...
متن کاملAstrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling
Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters cir...
متن کاملMitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes.
The master circadian pacemaker located within the suprachiasmatic nuclei (SCN) controls neural and neuroendocrine rhythms in the mammalian brain. Astrocytes are abundant in the SCN, and this cell type displays circadian rhythms in clock gene expression and extracellular accumulation of ATP. Still, the intracellular signaling pathways that link the SCN clockworks to circadian rhythms in extracel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 191 9 شماره
صفحات -
تاریخ انتشار 2013